A fast patch-dictionary method for whole image recovery
نویسندگان
چکیده
Various algorithms have been proposed for dictionary learning. Among those for image processing, many use image patches to form dictionaries. This paper focuses on whole-image recovery from corrupted linear measurements. We address the open issue with representing an image by overlapping patches: the overlapping leads to an excessive number of dictionary coefficients to determine. With very few exceptions, this issue has limited the applications of image-patch methods to the “local” kind of tasks such as denoising, inpainting, cartoon-texture decomposition, super-resolution, and image deblurring, for which one can process a few patches at a time. Our focus is global imaging tasks such as compressive sensing and medical image recovery, where the whole image is encoded together, making it either impossible or very ineffective to update a few patches at a time. Our strategy is to divide the sparse recovery into multiple subproblems, each of which handles a subset of non-overlapping patches, and then the results of the subproblems are averaged to yield the final recovery. This simple strategy is surprisingly effective in terms of both quality and speed. In addition, we accelerate computation of dictionary learning by applying a recent block proximal-gradient method, which not only has a lower per-iteration complexity but also takes fewer iterations to converge, compared to the current state-ofthe-art. We also establish that our algorithm globally converges to a stationary point. Numerical results on synthetic data demonstrate that our algorithm can recover a more faithful dictionary than two state-of-the-art methods. Combining our whole-image recovery and dictionary-learning methods, we numerically simulate image inpainting, compressive sensing recovery, and deblurring. Our recovery is more faithful than those out of a total variation method and a method based on overlapping patches. Our matlab code is competitive in terms of both speed and quality.
منابع مشابه
A New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملRedundancy Encoding for Fast Dynamic MR Imaging using Structured Sparsity
For dynamic magnetic resonance imaging (MRI) applications, a critical requirement is to reduce image acquisition times while maintaining high resolutions and signal-to-noise ratios. In this paper, a fast MRI technique based on encoding of the k-space redundancy using data-driven dictionaries learned for sparse representation of signals is presented. The novelty of the technique lies in separati...
متن کامل`0 norm based dictionary learning by proximal methods with global convergence
Sparse coding and dictionary learning have seen their applications in many vision tasks, which usually is formulated as a non-convex optimization problem. Many iterative methods have been proposed to tackle such an optimization problem. However, it remains an open problem to have a method that is not only practically fast but also is globally convergent. In this paper, we proposed a fast proxim...
متن کاملFace Image Superresolution via Locality Preserving Projection and Sparse Coding
It is important to enhance the resolution of face images from video surveillance for recognization and other post processing. In this paper, a novel sparse representation based face image superresolution (SR) method is proposed to reconstruct a high resolution (HR) face image from a LR observation. First, it gets a HR-LR dictionary pair for certain input LR patch via position patch clustering a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1408.3740 شماره
صفحات -
تاریخ انتشار 2013